New Paper on Co-Simulation for Quench Protection at CERN

Our paper on “Optimized Field/Circuit Coupling for the Simulation of Quenches in Superconducting Magnets” has been accepted by the IEEE Journal on Multiscale and Multiphysics Computational Techniques. The paper proposes an optimised waveform-relaxation approach for the simulation of magnetothermal transients in superconducting magnets. The work has been carried in the framework STEAM together with CERN.

Towards a new HPC cluster “Lichtenberg II” for TU Darmstadt

Lichtenberg-Cluster an der TU Darmstadt. Bild: Katrin Binner

From the press release: “Ein wichtiges Etappenziel für den Ausbau des Lichtenberg-Hochleistungsrechners ist geschafft: Der Wissenschaftsrat hat während seiner Frühjahrssitzungen das TU-Vorhaben „Lichtenberg II“ für die Förderung im Bund-Länder-Programm Forschungsbauten empfohlen. Beantragt sind 15 Millionen Euro, über die die Gemeinsame Wissenschaftskonferenz von Bund und Ländern Ende Juni entscheiden wird.”

Update. Funding is granted: “Lichtenberg II für die Spitzenforschung TU erhält 15 Millionen Euro von Bund und Land für Hochleistungsrechner” Continue reading →

Winter excursion to GSI, Darmstadt

Today, computational engineering students and several colleagues from our work group of computational electromagnetics made an excursion to the GSI Helmholtzzentrum für Schwerionenforschung. We visited the ion sources, the linear accelerator, the control room and we had a look to the prototype of the Super-FRS Magnet of the FAIR project. Thanks to the GSI for the tour and the important research that you do!

Albert Ruehli is visiting Darmstadt

Dr. Albert Ruehli, life fellow of IEEE, adjunct professor at Missouri University and former IBM research staff member is visiting TU Darmstadt this week. He gives today an introductory talk in the undergraduate course “Elektromagnetisches CE” on the history of the modified nodal analysis and on the events that led to its development at IBM in the 70s. If you could not attend, you might want to look at this youtube video.

New paper on Waveform Relaxation for Multiscale Problems

jcp Our paper on Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems (Innocent Niyonzima, Christophe Geuzaine, Sebastian Schöps) has been accepted by JCP:
This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton–Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point. Continue reading →

EMTS 2016 is over

emtsURSI Commission B’s International Symposium on Electromagnetic Theory (EMTS 2016) has been held from 14–18 August 2016 in Espoo, Finland. We presented in the Session of numerical time domain methods on Monday the contribution “An Application of ParaExp to Electromagnetic Wave Problems” (Melina Merkel, Innocent Niyonzima and Sebastian Schöps).

Continue reading

Talk on the simulation of electrical machines by Lars Kielhorn

logo_tailsitDr. Lars Kielhorn from TailSiT GmbH, Graz (Austria) talks on 25 Jul 2016, 16:15–17:45 (room S4|10-314) in the seminar on Computational Engineering. Abstract: Electrical machines commonly consist of moving and stationary parts, e.g., an electric motor features a rotor and a stator. If volume based numerical schemes such as the Finite Element Method (FEM) are applied the electromagnetic simulation of such devices is a challenging task since the variation of the geometrical configuration needs to be incorporated into the numerical scheme. Continue reading

Michal Maciejewski from CERN is visiting CE

CERNlogoSScadreOn Friday, July 1st Michal Maciejewski from CERN and Lodz University of Technology is visiting Computational Engineering at TU Darmstadt in the framework of the STEAM (“Simulation of Transient Effects in Accelerator Magnets”) cooperation, see e.g. this presentation. The aim of this project is the accurate prediction of quenches.