3rd-Party funded projects

I am/was coordinator or participant in the following research projects (for example DFG, EU and BMBF)
  • ParaMQS2 – Parallele und explizite Verfahren für die Simulation von Wirbelstromproblemen (DFG, SCHO1562/1-2)
    Das Forschungsvorhaben Parallele und explizite Verfahren für die Simulation von Wirbelstromproblemen setzt die in den DFG- Sachmittelbeihilfen CL14311-1 und SCHO1562/1-1 geförderten Vorarbeiten der Antragsteller fort. Ziel des Forschungsvorhabens ist es numerisch effiziente parallele Algorithmen für die Berechnung von Wirbelstromproblemen zu entwickeln, die besonders gut geeignet sind für aktuelle heterogene, massiv parallele Rechnerarchitekturen. Da konventionelle implizite und neu entwickelte (semi-)explizite Zeitintegrationsverfahren für magnetoquasistatische Probleme ab einer gewissen Anzahl von Rechenkernen nicht mehr gut skalieren, werden in diesem Forschungsvorhaben auch zeitparallele Algorithmen wie Mehrfach-Schießverfahren oder Parareal-Verfahren eingesetzt. Diese erschließen neues Parallelisierungspotential entlang der Zeitachse.
  • PASIROM (BMBF Verbund 05M2018)
    PASIROM ist ein Verbundprojekt, gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) im Programm zur Förderung von Forschung auf dem Gebiet Mathematik für Innovationen. Es baut auf den Ergebnissen des Verbunds SIMUROM auf (Förderzeitraum 2013-2016). Der Forschungsverbund untersucht Fragen, die sich an den Bedarfsfeldern der Hightech-Strategie 2020 der Bundesregierung orientieren: Mobilität, Klima und Energie. Effizientes Design von elektrischen oder elektromechanischen Energiewandlern, wie zum Beispiel Motoren, Generatoren und Wirbelstrombremsen, muss viele Komponenten berücksichtigen. Bei Berechnungen müssen Systeme mit Millionen von Unbekannten gelöst werden. Multiphysikalische Effekte wie Wirbelströme, Anregungen elektrischer Netzwerke, Rotorbewegungen oder Wärmeentwicklung müssen die Entwickler ebenfalls einbeziehen, so dass hoch aufgelöste Simulationen von komplizierten Geräten derzeit oft eine Woche oder länger dauern. Und trotz möglichst hoher Genauigkeit sind Simulationsergebnisse oft nur grobe Näherungen an die Wirklichkeit. Um zu vermeiden, dass kleine Abweichungen vom Referenzentwurf, beispielsweise in der Fertigung, zu unerwarteter Minderleistung oder Ausfällen führen, ist heute eine auf Erfahrungswissen beruhende Überdimensionierung erforderlich.
  • Tropfendynamische Prozesse unter extremen Umgebungsbedingungen (DFG, TRR-75)
    Tropfen spielen in vielen Bereichen der Natur und Technik eine zentrale Rolle. Beispiele aus der Natur sind Regen, Wolken oder Nebel. Im Hinblick auf technische Prozesse ist die Verdampfung von Tropfen in Kraftstoffsprays bei der Verbrennung in Kraftfahrzeugmotoren oder Flugtriebwerken als Anwendung zu nennen, wobei diese Vorgänge direkt mit der Entstehung von Schadstoffen verknüpft sind.
    Das grundsätzliche Verständnis von tropfendynamischen Prozessen ist entscheidend für die Voraussage natürlicher Prozesse sowie die Optimierung technischer Systeme. Viele dieser Prozesse laufen unter extremen Umgebungsbedingungen, z.B. hohem Druck oder extremen Temperaturen, ab und werden schon in der Technik angewandt, obwohl es noch große Lücken im grundlegenden Verständnis gibt. Hier genau setzt nun der Transregio an. Ziel ist es, ein vertieftes physikalisches Verständnis der wesentlichen Vorgänge zu gewinnen. Darauf basierend sollen Wege zur analytischen und numerischen Beschreibung aufgezeigt und diese selbstverständlich auch umgesetzt werden. Zudem wird dadurch auch eine Verbesserung der Vorhersage von größeren Systemen in der Natur oder in technischen Anlagen ermöglicht.
  • IGABEM – Simulation of Superconducting Cavities with Isogeometric Boundary Elements (DFG, SCHO1562/3-1).
    To calculate the resonant frequencies of superconducting cavity resonators for particle accelerators one needs numerical methods capable of achieving accuracies which push established techniques to their limit. This is mostly due to the precision the geometry description. It is described with Non-Uniform Rational B-Splines (NURBS), which can, contrary to the usual triangulations, describe the geometry exactly. This method became popular within the framework of Isogeometric Analysis (IGA) and has proven itself already in the context of finite element methods. Since the creation of a volumetric representation of this kind takes a lot of manual effort, and the boundary data of the required format is already given by CAD systems, the isogeometric approach shall be combined with a Boundary Element Method (BEM). Thanks to modern compression techniques and preconditioning, BEM is a viable alternative to a finite element method. Eventually, the algebraic eigenvalue problems generated by the boundary element method are nonlinear and contour integral methods will be used for their solution.
  • nanoCOPS – Nanoelectronic COupled Problems Solutions (EU FP7-ICT 619166).
    Designs in nanoelectronics often lead to problems that are large to simulate and that include strong feedback couplings. Industry demands to include variability to guarantee quality and yield. It also requests to incorporate higher abstraction levels to allow for system simulation in order to shorten design cycles, while preserving accuracy. Solutions are, advanced co-simulation/multirate/monolithic techniques, combined with envelope/wavelet approaches; generalized techniques from Uncertainty Quantification (UQ) for coupled problems, tuned to the statistical demands from manufacturability; enhanced, parameterized Model Order Reduction techniques for coupled problems and for UQ. All algorithms will be validated in the industrial design tools provided by our industrial partners. The consortium includes five universities, one research institute, two large-scale semiconductor companies, and three SMEs.
  • SIMUROM – Simulation und robuste Optimierung von elektromechanischen Energiewandlern unter Berücksichtigung von Unsicherheiten (BMBF Verbund 05M2013)
    SIMUROM ist ein Verbundprojekt, gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) im Programm zur Förderung von Forschung auf dem Gebiet “Mathematik für Innovationen in Industrie und Dienstleistungen” (Projektträger: DESY, Hamburg). Die Ziele des Verbundprojektes bestehen in problemspezifischer Modellbildung und -analyse, sowie allgemeingültiger Methodenentwicklung, die Unsicherheiten berücksichtigt und robuste Simulationen ermöglicht. Auf dieser Grundlage werden parametrische reduzierte Modelle konstruiert, die eine robuste Optimierung ermöglichen.
  • ParaMQS – Parallele und explizite Verfahren für die Simulation von Wirbelstromproblemen (DFG, SCHO1562/1-1)
    In this research proposal we will develop the fundamentals for new numerical methods and improve existing schemes for the efficient explicit computation of low-frequent electromagnetic fields. The aim is to solve larger problems in less time by using parallel computing architectures. We propose in particular the combination of Discontinous Galerkin Finite Elements with explicit Runge-Kutta time-integration methods. This allows to make good use of the computing power of multi-core architectures (e.g. general purpose graphics processor units) because many (parallel) operations can be performed with low data communication.
  • CoSiMOR – Scale bridging simulation methods based on order-reduction and co-simulation (DFG Netzwerk)
    The intention of the CoSiMOR network is to provide an environment for the interdisciplinary exchange of advanced computational methods and possible fields of application. The focus is on multi-scale problems, e.g., in the sense of different time or length scales. From a methodological point of view, methods belonging to the class of co-simulation (CoSi) and model order-reduction (MOR) are investigated by the members of the network. Examples for such problems are found in electronic circuit simulation, where individual devices are replaced by fine resolution finite element models usually living at different time-scales. A possible solution technique for this problem class is co-simulation.
  • UQ for Cavities (DFG Netzwerk)
    The scientific network ‘Uncertainty quantification techniques and stochastic models for superconducting radio frequency cavities’ (SCHM-3127/2-1) deals with the modeling and determination of uncertainties in stochastic parameters and outputs of superconducting high frequency resonators. Aim of the network is to development new and exchange existing approaches among the network partners (University of Rostock, Technische Universität Darmstadt, DESY and CERN). These cover models for the description of input uncertainties (e.g. geometry parameters) as well as methods for determining uncertainties in the outputs (e.g. eigenmodes) for appropriate benchmark geometries. Techniques include deterministic, stochastic and composite approaches. When applied, they differ in their efficiency, depending on the 12problem addressed. Along with comparing stochastic methods the applied discretization methods of the various network partners will be evaluated.
I contributed to the following research projects:
  • Modellordnungsreduktionstechniken für EQS Simulationsverfahren in der elektrischen Energie-übertragungstechnik (DFG, CL143/10-1)
    Ziel dieses Forschungsvorhabens ist die Entwicklung von effizienten Simulationsverfahren zur Auslegung von Systemkomponenten der elektrischen Hochspannungsfelder unter spezieller Berücksichtigung von elektrisch feldsteuernden Materialien. Dafür sollen aufbauend auf elektroquasistatischen Zeitbereichsanalyse-Verfahren Modellordnungsreduktions-Methoden (MOR-Methoden) entwickelt werden. Diese sollen hinsichtlich ihrer numerischen Effizienz und Genauigkeit erforscht und die Zeitbereichsmethoden damit in ihrer Effizienz verbessert werden, so dass Parameterstudien und Optimierung mit hochaufgelösten Modelle in praxistauglichen Rechenzeiten betrieben werden können. [weiterlesen]
  • SOFA (BMBF Verbund, 03MS648E)
    Das Verbundprojekt SOFA (Gekoppelte Simulation und Optimierung für robustes virtuelles Fahrzeugdesign) widmet sich neuen Problemstellungen im Kraftfahrzeugdesign, die sich aus der zunehmenden Komplexität für bordeigene elektrische und elektronische Systeme als auch aus den wachsenden Anforderungen auf der mechanischen Seite durch moderne Leichtbauwerkstoffe, veränderte Antriebskonzepte sowie hochgradig nichtlineare und adaptierbare Kopplungselemente ergeben. Ziel ist eine mathematische Modellbildung, Modellanalyse und Methodenentwicklung, die eine robuste Co-Simulation der gekoppelten Multiphysiksysteme auf Basis vorhandener Softwarepakete ermöglicht sowie Alternativen im Bereich monolithischer Simulationen anbietet, falls eine Co-Simulation nicht möglich ist. [weiterlesen]
  • ICESTARS (EU, FP7-ICT)
    ICESTARS addresses a series of critical issues or “bottlenecks” in the currently-available infrastructure for the design and simulation of new and highly-complex Radio Frequency (RF) front ends operating beyond 10 and up to 100 GHz. Future systems demand an increasing blend of analogue and digital functionalities. The ICESTARS research will accelerate the chip development process in the extremely high frequency (EHF) range to accomplish future demands for higher capacity channels. The key to enable the realisation of single-chip integration of high-GHz wireless modules is resolving the shortcomings in available design flows. [further reading]
  • COMSON (EU RTN, MRTN-CT-2005-019417)
    CoMSON (COupled Multiscale Simulation and Optimization in Nanoelectronics) is a Marie Curie Research Training Network supported by the European Commission in the framework of the programme “Structuring the European Research Area” within the 6th Framework Research Programme of the European Union. It was established on October 1st, 2005, and did run for a total of four years. [further reading]